THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics

MATH 2050A extra Tutorial

1. Show that

$$
\lim \sqrt[n]{n!}=+\infty
$$

2. Prove that if $\lim z_{n}=A$, then:

$$
\lim _{n \rightarrow \infty} \frac{z_{1}+z_{2}+\cdots+z_{n}}{n}=A
$$

3. Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. For each $n \in \mathbb{N}$, define

$$
b_{n}=\sup _{k \geq n} a_{k}=\sup \left\{a_{k}: k \geq n\right\}, \quad c_{n}=\inf _{k \geq n} a_{k}=\inf \left\{a_{k}: k \geq n\right\} .
$$

(a) Show that

$$
\lim b_{n}=\inf b_{n}, \quad \text { and } \quad \lim c_{n}=\sup c_{n} .
$$

(b) Define the limit superior $\overline{\lim } a_{n}$ and the limit inferior $\underline{\lim } a_{n}$ of $\left(a_{n}\right)$ by

$$
\overline{\lim } a_{n}=\lim b_{n}=\inf _{n \geq 1} \sup _{k \geq n} a_{n}, \quad \underline{\lim } a_{n}=\lim c_{n}=\sup _{n \geq 1} \inf _{k \geq n} a_{n} .
$$

Show that $\underline{\lim } a_{n} \leq \overline{\lim } a_{n}$.
Remark: This is another definitions of limit inferior and limit superior, which is equivalent to the definitions on the book.
4. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be bounded sequences such that $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$. Show that

$$
\varlimsup \overline{\lim } a_{n} \leq \varlimsup b_{n}, \quad \text { and } \quad \underline{\lim } a_{n} \leq \underline{\lim } b_{n} .
$$

5. Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. Let $\alpha=\overline{\lim } a_{n}$ and $\beta=\underline{\lim } a_{n}$.
(a) i. Show that for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $a_{n}<\alpha+\epsilon$.
ii. Show that for all $\epsilon>0$, for all $n \in \mathbb{N}$, there exists $k \geq n$ such that $\alpha-\epsilon<a_{k}$.
(b) i. Show that for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $\beta-\epsilon<a_{n}$.
ii. Show that for all $\epsilon>0$, for all $n \in \mathbb{N}$, there exists $k \geq n$ such that $a_{k}<\beta+\epsilon$.
6. Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. Define

$$
E:=\left\{x \in \mathbb{R}: \text { there is a subsequence }\left(a_{n_{k}}\right) \text { of }\left(a_{n}\right) \text { such that } a_{n_{k}} \rightarrow x\right\} .
$$

Let $\alpha=\varlimsup{ }_{n}$. Show that $\alpha \in E$ and $\alpha=\sup E$.
Remark: This result also holds for limit inferior.
7. Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. Show that $\left(a_{n}\right)$ is convergent if and only if $\lim a_{n}=\underline{\lim } a_{n}$. In this case, we have $\lim a_{n}=\lim a_{n}=\underline{\lim } a_{n}$.
8. Prove that convergence of $\left(s_{n}\right)$ implies convergence of $\left(\left|s_{n}\right|\right)$. Is the converse true?
9. if $s_{1}=\sqrt{2}$, and

$$
s_{n+1}=\sqrt{2+s_{n}} \quad(n=1,2,3, \ldots),
$$

prove that $\left(s_{n}\right)$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.
10. For any two sequence $\left(a_{n}\right),\left(b_{n}\right)$ of real number, prove that

$$
\overline{\lim }\left(a_{n}+b_{n}\right) \leq \overline{\lim } a_{n}+\overline{\lim } b_{n},
$$

provided that $\overline{\lim } a_{n}, \overline{\lim } b_{n} \neq+\infty$.
11. Fix a positive number α, choose $x_{1}>\sqrt{\alpha}$, and define x_{n+1} by following formula

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right) .
$$

Prove that $\left(x_{n}\right)$ convergence and that $\lim x_{n}=\sqrt{\alpha}$.
12. If you have any question about midterm, you can email me via iauyeung@math.cuhk.edu.hk or you can come to 222 C to ask me on Monday before $4: 30 \mathrm{pm}$.

